Calculate Distance & Bearing Between Geolocation

Recently, I toyed with “nearby” services based on geolocation. In this post, I will be sharing C# implementation to calculate distance and bearing between geolocation.  

Let’s start with the skeleton class GLatLng below

using System;

namespace GMap
{
    public enum DistanceType : int
    {
        Miles = 0,
        Kilometers = 1
    }
   
    public class GLatLng
    {
        public const double EarthRadiusInMiles = 3956.0;
        public const double EarthRadiusInKilometers = 6367.0;
       
        private double latitude;
        private double longitude;

        public GLatLng(double latitude, double longitude)
        {
            this.latitude = latitude;
            this.longitude = longitude;
        }

        public double DegreeToRadian(double angle) { return Math.PI * angle / 180.0; }

        public double RadianToDegree(double angle) { return 180.0 * angle / Math.PI; }
       
        public double Latitude
        {
            get { return this.latitude; }
            set { this.latitude = value; }
        }
        public double Longitude
        {
            get { return this.longitude; }
            set { this.longitude = value; }
        }
    } // end class GLatLng
}

The following is the method to calculate the distance. You can choose the distance type between miles or kilometers. This uses haversine formula which give great-circle distances between two points on a sphere from their longitudes and latitudes.

public double DistanceTo(double lat, double lng, DistanceType dType)
{
    double R = (dType == DistanceType.Miles) ? EarthRadiusInMiles : EarthRadiusInKilometers;
    double dLat = DegreeToRadian(lat) - DegreeToRadian(this.latitude);
    double dLon = DegreeToRadian(lng) - DegreeToRadian(this.longitude);
    double a = Math.Sin(dLat / 2) * Math.Sin(dLat / 2) + Math.Cos(DegreeToRadian(this.latitude)) * Math.Cos(DegreeToRadian(lat)) * Math.Sin(dLon / 2) * Math.Sin(dLon / 2);
    double c = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
    double distance = c * R;

    return Math.Round(distance, 2);
} // end DistanceTo

The second way to calculate the distance is based on the rhumb line which generally longer than great-circle routes.

public double RhumbDistanceTo(double lat, double lng, DistanceType dType)
{
    double R = (dType == DistanceType.Miles) ? EarthRadiusInMiles : EarthRadiusInKilometers;
    double lat1 = DegreeToRadian(this.latitude);
    double lat2 = DegreeToRadian(lat);
    double dLat = DegreeToRadian(lat - this.latitude);
    double dLon = DegreeToRadian(Math.Abs(lng - this.longitude));

    double dPhi = Math.Log(Math.Tan(lat2 / 2 + Math.PI / 4) / Math.Tan(lat1 / 2 + Math.PI / 4));
    double q = Math.Cos(lat1);
    if (dPhi != 0) q = dLat / dPhi;  // E-W line gives dPhi=0
    // if dLon over 180° take shorter rhumb across 180° meridian:
    if (dLon > Math.PI) dLon = 2 * Math.PI - dLon;
    double dist = Math.Sqrt(dLat * dLat + q * q * dLon * dLon) * R;

    return dist;
} // end RhumbDistanceTo

Next methods calculate the bearing between geolocation. Similar to distance there are 2 ways to calculate the bearing.


public double RhumbBearingTo(double lat, double lng)
{
    double lat1 = DegreeToRadian(this.latitude);
    double lat2 = DegreeToRadian(lat);
    double dLon = DegreeToRadian(lng - this.longitude);

    double dPhi = Math.Log(Math.Tan(lat2 / 2 + Math.PI / 4) / Math.Tan(lat1 / 2 + Math.PI / 4));
    if (Math.Abs(dLon) > Math.PI) dLon = (dLon > 0) ? -(2 * Math.PI - dLon) : (2 * Math.PI + dLon);
    double brng = Math.Atan2(dLon, dPhi);

    return (RadianToDegree(brng) + 360) % 360;
} // end RhumbBearingTo

public double BearingTo(double lat, double lng)
{
    double lat1 = DegreeToRadian(this.latitude);
    double lat2 = DegreeToRadian(lat);
    double dLon = DegreeToRadian(lng) - DegreeToRadian(this.longitude);

    double y = Math.Sin(dLon) * Math.Cos(lat2);
    double x = Math.Cos(lat1) * Math.Sin(lat2) - Math.Sin(lat1) * Math.Cos(lat2) * Math.Cos(dLon);
    double brng = Math.Atan2(y, x);

    return (RadianToDegree(brng) + 360) % 360;
} // end BearingTo

Advertisements

15 thoughts on “Calculate Distance & Bearing Between Geolocation”

  1. Thanks for this post. However, if i want to compute the difference between two or more address (e.g. 113 Ohio avenue, Newyork). That is use the actual addresses rather than the lat, long etc. What do i do?

  2. Please can someone tell me what i need to download to run this sample code? I downloaded google map and i’m still missing some references

  3. After looking for different approachs this is what gives me the results I´ve been looking for, Other solutions dont returns direct solution and requires to implement additional operations.

    This one is Clear, Simply and Direct.

    Thank you very much for sharing.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s